

Discovery of MRT-2359, an orally bioavailable GSPT1 molecular glue degrader, for MYC-driven cancers

Owen B. Wallace, Ph.D. Monte Rosa Therapeutics, Boston MA & Basel Switzerland

Disclosure Information

APRIL 14-19 • #AACR23

Owen B. Wallace

I have the following relevant financial relationships to disclose: Employee of Monte Rosa Therapeutics Stockholder in Monte Rosa Therapeutics

Molecular Glue Degraders are a Clinically Validated Modality

- MGD binds to E3 ligase
- Protein surface is reshaped
- PPI induced with neosubstrate
- Neosubstrate is ubiquitinated
- Ubiquitinated protein shuttled to proteasome
- Protein is degraded

MYC Family Transcription Factors are Key Cancer Dependence Genes

MYC family members are amongst the most dysregulated oncogenes in human cancer

- MYC up-regulation dysregulates key cellular processes (e.g. ribosome biogenesis and protein synthesis)
- MYC dysregulation is frequently associated with poor prognosis and unfavorable patient survival
- MYC family: c-MYC, N-MYC, and L-MYC
- MYCs are considered undruggable by classic methods

Cells expressing high MYC are sensitive to MYC CRISPR KO

DepMap data, each dot represents a cell line

Identification of GSPT1 Degraders Active in MYC-driven Solid Tumors

GSPT1 MGDs selectively affect MYC-addicted cells

GSPT1 MGD concentration (µM)

Viability effects are cereblon-dependent

MYC expression status governs cell sensitivity to primary hit

5

Proteomics reveals selective degradation of GSPT1

Representative hit from MGD library inducing the degradation of GSPT1

GSPT1 Target and Desired MGD Profile

- To sustain growth, MYC-driven tumors are addicted to protein translation
- This addiction creates a **dependency on** the translation termination factor **GSPT1**

Desired MGD Profile:

- Oral
- Optimal selectivity for GSPT1 vs other neosubstrates
- Maximal preferential effect (MYCdriven vs non MYC-driven cancers)
- Differentiation over other pathway mechanisms/compounds

MedChem Design was Focused on Degradation Kinetics, Selectivity, Oral **Bioavailability**

Differential Effect (MYC vs non-MYC-driven)

- Kinetic measurements of • degradation reveal novel parameter for optimization
- GSPT1 degradation kinetics are ٠ linked to its MoA
- MRT-2359 achieves **a high** ٠ selective effect (2.4 U) in NSCLC
- MRT-2359 has been rationally ٠ designed to be in the ADMET sweetspot
- Several compounds with good oral • bioavailability discovered (large circles = >40%F po)

Carbonyl-Switch of MRT-2359 was Critical for Selectivity

- Sidechain dictated bindingmode forces isoindolinone carbonyl in new position
- GSPT1 degron is engaged through extended sidechain interactions
- Alternative ZnF neosubstrates are no longer recruited resulting in high selectivity

MRT-2359 is a Highly Optimized and Potent GSPT1 MGD

CRBN/MRT-2359/GSPT1 ternary complex

Biochemical and cellular data	
CRBN binding (HTRF; K _i)	113 nM
Ternary complex (HTRF; EC ₅₀)	7 nM
Selectivity (TMT proteomics)	GSPT1 / GSPT2
DC ₅₀ /Dmax (high Myc lung lines, 6 hr)	1-20 nM / 100%
High N-Myc NSCLC H1155 / ABC-1 (EC ₅₀)	25 / 74 nM
High L-Myc SCLC H82 / H1836 (EC ₅₀)	31 / 11 nM
MM/lymphoma panel	broad activity

MRT-2359 is a Highly Selective & Oral GSPT1-directed MGD

MRT-2359 is a selective GSPT1-directed MGD

MRT-2359 is orally bioavailable and has favorable ADMET profile

ADMET profile	
CYP DDIs	> 30 μM
hERG inhibition patch clamp	EC ₅₀ > 30 μM
Oral bioavailability all species	~50%

 No activity observed in an in vitro panel of 44 safety targets

6hr post treatment in MM1S and Kelly (SALL4)

1hr post treatment

Preferential Activity of MRT-2359 in MYC-Driven NSCLC Lines

N-MYC overexpression sensitizes NCI-H2023 resistant cells to MRT-2359

Doxycycline-inducible N-MYC model

11

GSPT1 western blot at 6 hr (N-Myc high) and 24 hr (low). 72 hr viability assay (CTG)

Incucyte, 96 hr post treatment

MRT-2359 Shows Preferential Activity in MYC High or Neuroendocrine (NE) Cancer Cell Lines

12

MRT-2359 Preferentially Impairs Protein Synthesis in Tumor Cells with High MYC Expression

MRT-2359 induces ribosome stalling at stop codon only in N-MYC high cell line

Low N-MYC NCI-H2023

MRT-2359 completely abrogates protein synthesis only in N-MYC high cell line

Puromycin incorporation

High N-MYC NCI-H1155

13

Ribo-Seq – 24 hr post-treatment

MRT-2359 Affects MYC and MYC Pathway in N-MYC High NSCLC Cell Lines

MRT-2359 induce GSPT1 degradation leading to N-MYC protein downregulation in NCI-H1155

Low N-MYC NCI-H2023

High N-MYC NCI-H1155

Degradation of GSPT1 leads to downregulation of N-MYC transcriptional output in NCI-H1155

Time course RNAseq

MRT-2359 Preferential Activity in MYC High Lung Cancer Lines is Unique

72 hr viability assay (CTG)

Three Mechanisms Driving Preferential Activity in MYC High Cancer Lines

Mechanism is applicable to c-MYC, N-MYC and L-MYC

MRT-2359 Mouse-trial in NSCLC, SCLC and Lung NE Patient-derived Xenografts

Dose-dependent Anti-tumor Activity Post Treatment with MRT-2359 and Using Different Schedules in PDX Models

Study suggests dose dependent activity and similar efficacy of continuous vs on/off schedule

18

MRT-2359-001 Clinical Study Design

Phase 1: Dose Escalation

Phase 2: Expansion Cohorts

Lung cancer (NSCLC & SCLC), DLBCL, high-grade neuroendocrine tumors, and N-/L-MYC amplified solid tumors

Patient dosing initiated in October 2022

Acknowledgments

MRT team

- Debora Bonenfant
- Silvia Buonamici
- Maciej Cabanski
- Lisa Cantagallo ٠
- Qian Chen
- Agustin Chicas
- Cecile D'Alessandro
- Anna Diesslin

Herve Farine

Gerald Gavory

Filip Janku

Chris King

Yimao Liu

David Lyon

Mahmoud Ghandi

- Vittoria Massafra Bernhard Fasching
 - Rajiv Narayan
 - Arnaud Osmont
 - Asli Oztan Matos
 - Vladas Oleinikovas
 - Carolina Perdomo Ortiz
 Owen Wallace
 - Dave Peck •
 - Thomas Ryckmans

- Martin Schillo
- Ambika Singh
- Ralph Tiedt
- Simone Tortoioli
- Peter Trenh
- Markus Warmuth
- Lars Wiedmer

Project team

20

