AACR-NCI-EORTC Virtual International Conference on

MOLECULAR TARGETS AND CANCER THERAPEUTICS October 7-10, 2021

Identification of GSPT1-mediated molecular glue degraders for the treatment of Myc-driven cancers

LBA004

Dr Gerald Gavory

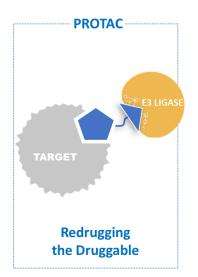
Monte Rosa Therapeutics Inc.

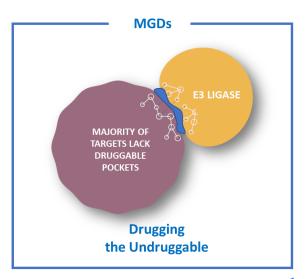
Gerald Gavory

I have the following financial relationships to disclose:

Employee of: Monte Rosa Therapeutics

I will not discuss off label use and/or investigational use in my presentation.



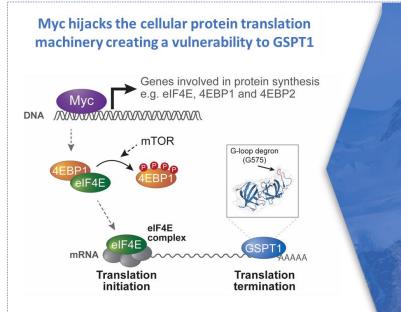


Molecular Glue Degraders (MGDs)

Opportunities for expanding the target space and fostering a new generation of drugs

3-10% OF PROTEOME

UNCHARTED CHEMICAL AND TARGET SPACES



Targeting Myc-driven Tumors and Their Addiction to Protein Translation

GSPT1 is a key regulator and vulnerability of Myc-induced translational addiction

Target profile

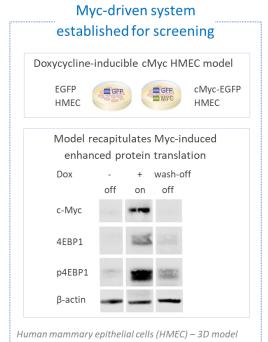
To sustain growth, Myc-driven tumors are **addicted to protein translation**

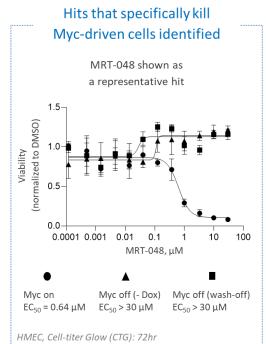
 Myc regulates the expression of key genes related to protein translation, including the master regulator 4EBP1 and eIF4E

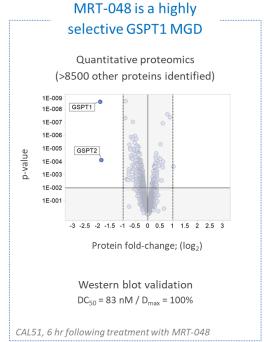
This addiction to protein translation creates a possible **dependency** to the termination translation factor GSPT1 a degron-containing protein

GSPT1 MGDs exploit this **vulnerability** by:

- Disrupting protein translation output
- Reducing Myc-oncogenic signaling

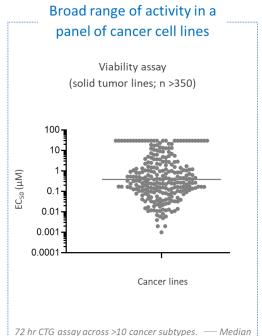


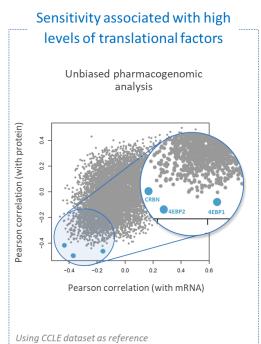


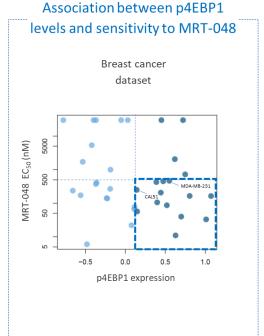


MRT-048 a Potent, Selective GSPT1 Degrader for Myc-driven Cancers

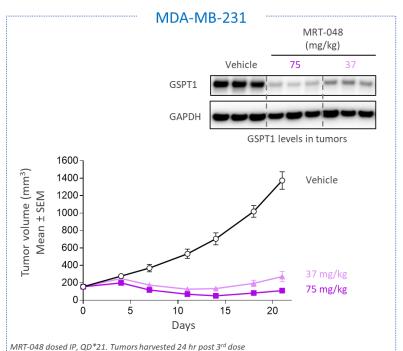
Replicating and targeting Myc biology in a breast model system

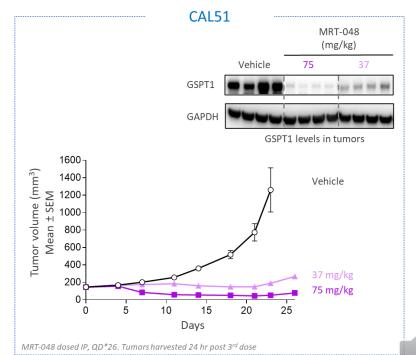






MRT-048 Sensitivity is Linked to Key Regulators of Protein Translation including p4EBP1 in Breast Cancer Cell Lines

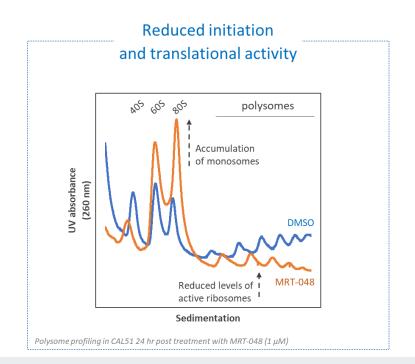


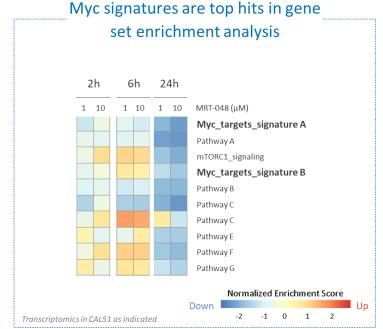


MRT-048 in vivo Efficacy Studies in High p4EBP1 Breast Cancer Models

Potent anti-tumor activity and target engagement demonstrated

DO NOT POST





MRT-048 Impairs Protein Translation and Myc Oncogenic Signaling

Myc gene signatures are strongly down-regulated following treatment with MRT-048

Targeting Myc-addicted Tumors with GSPT1 MGDs

- Cellular system replicating Myc biology established in breast model and used for screening
- GSPT1 degraders that specifically kill Myc-driven cells identified
- MRT-048 is a potent and selective GSPT1 degrader
- MRT-048 impairs protein translation and Myc oncogenic signaling
- Patient stratification hypothesis developed and robust anti tumor activity demonstrated in vivo

Acknowledgements

Gerald Gavory

Bernhard Fasching
Markus Warmuth

Silvia Buonamici

Debora Bonenfant

Amine Sadok

Ambika Singh Martin Schillo

Vittoria Massafra

Anne-Cecile d'Alessandro

John Castle

Mahmoud Ghandi

Agustin Chicas

Hannah Wang

Ilona Bernett

Laura Chan Chiara Gorrini

Theo Roumiliotis

Jyoti Choudhary

Yann-Vai LeBihan Marc Cabry

Mark Stubbs

Rosemary Burke

Rob van Montfort

John Caldwell

Rajesh Chopra

Ian Collins

Frederic Delobel

Alexander Flohr

Giorgio Ottaviani Thomas Ryckmans

Anne-Laure Laine

Oliv Eidam

https://www.monterosatx.com

https://www.linkedin.com/company/monte-rosa-therapeutics

https://twitter.com/MonteRosaTx