AI Applications for Molecular Glue Degraders: From Degron Discovery to *in silico* Screening

Pablo Gainza | 5th Annual Targeted Protein Degradation Summit | October 26th, 2022

Molecular Glue Degraders (MGDs) – Drugging The Undruggable Pairing E3 ligases to the target space for MGD-induced degradation

Molecular Glue Degraders (MGDs) – Drugging The Undruggable Pairing E3 ligases to the target space for MGD-induced degradation

AI/ML in silico predictions (AI/ML)

Essential Ingredients For Glue-based Protein Degradation Cereblon (CRBN) as a template for future E3 ligase platforms

Known CRBN Neosubstrates Share a Common Structural Motif The canonical G-loop: a beta-hairpin with an alpha-turn and a conserved glycine

Petzold et al. 2016

Matyskiela et al. 2016

Sievers/Petzold et al. 2018

Canonical G-loops in the Human Proteome

Over 10% of human proteins contain a G-loop like structure, most in undruggable domains*

The E3 Ligase Neosurface Drives Neosubstrate Recruitment The molecular surface is the best model to understand and predict neosubstrate interactions

 G-loops present a limited description of the CRBN target space.

- Rationally expanding chemistry creates diverse E3 ligase neosurfaces, enabling recruitment of new canonical and non-canonical targets
- Our geometric deep learning platform fAIceit ™ effectively leverages surfaces to predict neosubstrates for CRBN and beyond.

Molecular Surface Interaction Fingerprints Geometric deep learning applied to protein surfaces

Geometric features

Shape index

Distance-dependent

curvature

OL

Hydropathy

Chemical features

Continuum electrostatics

Free electrons/ protons

Gainza et al. Nature Methods 2020

Molecular Surface Interaction Fingerprints Geometric deep learning applied to protein surfaces

matter and a second sec

Geodesic polar coordinates

Monte Rosa AI finds Degrons Using Surfaces Fast, proprietary algorithms tailored to molecular glue discovery

Prediction

fAIceit-Degron Optimized to Learn CRBN Degron Features From Known Degron Surfaces

fAIceit-degron classifies protein surfaces for the presence of degrons. fAIceit-degron creates a feature-rich surface characterization and uses 3 layers of geodesic convolution with deep vertexes to classify input surfaces.

Validating fAIceit-degron on Novel Degrons (not in Training Data)

fAIceit-degron Finds and Characterizes Degron Surfaces NEK7 has a unique G-loop surface, enabling selective MGD degradation

MGD-induced NEK7-selective degradation

Protein fold-change (log₂)

Mass-spectrometry TMT proteomics U937 24hr post treatment

Å² degron area; P polarity; H hydrophobicity; + positive area; - negative area

Encoding Protein Surfaces as Fingerprints

14

Enables ultra-fast, proteome-wide search for similar & complementary fingerprints

Gainza et al. Nature Methods 2020

Fingerprint Encoding Enables Ultra-fast Search Proteome-wide queries of complementary (or similar!) surfaces

Searching using surface fingerprints

1. Encode surfaces as fingerprints

2. Align fingerprints using RANSAC

3. Score post-alignment interface using neural network

Fingerprint matching is blazingly fast

Method		MaSIF- search	Zdock + ZRank2
# solved complexes in top	100	67	77
	10	56	63
	1	43	45
Time (min)		39	159,902
		>4,000x	(!!) faster

than state-of-the-art docking tools

Gainza et al. Nature Methods 2020

Proteome-wide Fast Matching of Degron Surface Mimics Match surface fingerprints, not G-loops

fAIceit-Mimicry Search Identifies Novel Degrons

A predicted non-hairpin, non-canonical degron in an established oncology target

NanoBRET confirms prediction and binding mode

E3 Ligase Neosurface Footprint Defines the Target-Complementary Surface The neosurface can be used to find novel neosubstrates

fAIceit-Complementarity Finds Proteins Complementary to E3 Ligases The E3 Ligase footprint is encoded as a fingerprint for fast E3-target matchmaking

MGD₁

fAIceit-Complementarity Expands Target Space to Non-Canonical Degrons

Monte Rosa AI finds Degrons Using Surfaces Fast, proprietary algorithms tailored to molecular glue discovery

Thank you

