# Accelerating Molecular Glue Discovery through AI/ML & Computation

Elena Dolgikh | 2<sup>nd</sup> Molecular Glue Drug Development Summit | January 31<sup>st</sup>, 2024



### Molecular Glue Degraders are a Clinically Validated Modality



## Monte Rosa Pipeline

| Program/<br>Target  | Indication(s)                                    | Discovery | IND-Enabling | Clinical | Next<br>Anticipated Milestone       | Ownership |
|---------------------|--------------------------------------------------|-----------|--------------|----------|-------------------------------------|-----------|
| MRT-2359<br>(GSPT1) | NSCLC, SCLC and other<br>MYC-driven Malignancies |           |              |          | RP2D in Q2 2024                     |           |
| MRT-6160<br>(VAV1)  | Autoimmune Disease                               |           |              |          | IND in 1H 2024                      |           |
| NEK7                | Inflammatory<br>Diseases                         |           |              |          | Development candidate in<br>Q1 2024 |           |
| CDK2                | Ovarian Cancer,<br>Breast Cancer                 |           |              |          | Development candidate<br>in 2024    |           |
| Discovery Targets   | Multiple                                         |           |              |          | Lead<br>optimization                |           |
| Discovery Targets   | Oncology and<br>Neurological Diseases            |           |              |          | Undisclosed                         | Roche     |
|                     |                                                  |           |              |          |                                     |           |



3

Various

#### Our Rational Approach to Unleash the Full Potential of MGDs



### Prioritizing E3 Ligases Based on Reprogrammability Potential



#### Headlong – In-house Virtual Screening Method Combines several machine learning methods trained on large datasets

Headlong docks and evaluates docked poses

Headlong identifies CRBN active scaffolds



### Headlong Identifies Candidate CRBN Scaffolds



#### Headlong identifies known CRBN binders



### Novel Candidate CRBN Scaffolds in Top Compound Poses



#### Monte Rosa MGD Library is Diverse and in Good Property Space

#### MRT library clearly differentiated



External space = SciFinder search based on published compounds (40K) containing glutarimide and MW < 500. The external space may contain PROTAC-like compounds, intermediates, and MolGlue-like compounds, among others. Internal space comprises Diversity Library, containing glutarimide and MW < 500.

#### ...and has drug-like properties



### FLASH Virtual Library Creation for Library Expansion, Hit-to-Lead and LO



CRBN+MGD Neosurface Clustering to Guide Library Expansion The CRBN neosurface formed by both CRBN and the MGD drives selectivity and potency

**Compute electrostatic & geometric similarity between** virtual compound pairs using predicted poses

#### Compound\_i neosurface



#### NEK7 vs. VAV1 active series neosurface-based clustering demonstrates unique CRBN+MGD surfaces



## MRT Library Enrichment: Maximum Hybrid Surface Diversity

## Metric: compound neosurface similarity



#### Library scaffold expansion beyond current MRT scaffolds



Novel territories covered by expansion (UMAP projection)

## Surface similarity of all proposed monomers vs. those in MRT collection



Final Selection: monomers with SurfaceSim < 0.8

### **GlueAID ADME Suite Predicts MGD Properties**





at 60

б

% Re

500

1000

2000

1500

Hu Clearance (uL/min/g)

2500

1,000s training set 100s scaffolds

13

Within 3/5-fold

#### **GlueAID Used on Ongoing Projects**

Continually improved predictions with incoming data; performance monitored via dashboard



#### **GlueAID** Reaction Informatics Accelerates Synthesis



## FLASH Expansion Leverages GlueAID for ADME and Synthesis Optimization



Actives: ~150 MRT scaffolds

are being explored

#### Rhapsody Virtual Screening Predicts Ternary Complex Hits



## Putting it Together: Comp Chem Guides Screen to Validated Hit Series in 2 Months for **Target X**



#### CDK2 as a Target for Selected Solid Tumors



CDK2 a key cell cycle regulator

#### Therapeutic hypothesis:

- CDK2 is a key driver of cancers with cyclin dependent kinase pathway alterations
- MGDs will achieve greater selectivity against other CDKs and kinases in general, as well as more sustained pathway inhibition compared to inhibitors

#### **Clinical Opportunity:**

- ER positive breast cancer pre and post treatment with CDK4/6 inhibitors (474K patients)
- Ovarian cancer (64K patients), endometrial cancer (124K patients) and other tumors with CCNE1 amplification

## *In Silico*-driven Scaffold Selection and Compound Design for CDK2 Rich data-set of proprietary Monte Rosa library allows informed selection of designs instead of pure diversity-based compound enumeration



### Rhapsody<sup>™</sup> Virtual Screening for Lead Optimization

#### **CDK2** ensemble of 12 protein structures



21

## Rhapsody used to select active analogs for lead optimization



Rhapsody scoring of single-point HTRF screening of library MGDs.

#### CDK2-directed MGDs are Selective and Inhibit Proliferation of CDK2dependent Cancer Cells

## CDK2 degradation results in reduction of E2F pathway proteins



#### **CDK2 degradation arrests CDK2-dependent cells in G1 phase**



#### **CDK2 degradation blocks proliferation**



CRBN K<sub>i</sub> = 129 nM SPR half-life = 994 s NanoBiT DC<sub>50</sub> = 130 nM CyQuant MDA-MB-157 EC<sub>50</sub> = 46 nM

### Our Rational Approach to Unleash the Full Potential of MGDs



### Prioritizing E3 Ligases Based on Reprogrammability Potential



## Headlong Virtual Screen Identifies Novel Scaffolds to a New E3 Ligase



#### Virtual Screening Hits Confirmed in Dose Response, Including nM Series



## Acknowledgments





## Thank You

