Teaching CRBN New Tricks

Georg Petzold | Keystone Symposia Proximity-Induced Therapeutics | January 23rd, 2024

Our Rational Approach to Unleash the Full Potential of MGDs

The QuEEN[™] Engine – Unique Capabilities for MGD Discovery and Design

AI/ML

In silico degron & ternary complex discovery using proprietary AI-powered algorithms

Structure-based Design

Proprietary database of >100 cryo-EM and crystal structures to enable rapid structure-based MGD design

Proximity Screening

Specialized suite of biochemical and cellular assays to assess proximity and degradation in high throughput

Proteomics

Integrated proteomics engine and database to identify novel targets and to explore cellular complex formation and degradation Neosubstrates Engage CRBN Through a Shared Structural Motif The G-loop degron: a β -hairpin a-turn with a conserved glycine

Petzold et al. 2016

Matyskiela et al. 2016

Sievers/Petzold et al. 2018

Mining the Human Proteome for Canonical G-loop Degrons Over 2,500 human proteins contain a G-loop-like motif, many in undruggable domains

The G-loop Degron Recruits Different Domain Types to CRBN Mined G-loops validate in proximity readouts (NanoBRET, TurboID, ...)

➡ WT
➡ G/N mutant

Engineering Selective MGDs for G-loop Targets – Exemplified by NEK7 NEK7 and CK1a show high degree of G-loop surface similarity

Promiscuous MGDs induce proximity of multiple G-loop targets to CRBN

NEK7 and CK1a share high G-loop surface similarity

CRBN

8

CRBN

NEK7 Engages CRBN in a Partially Open Conformation A larger spectrum of CRBN conformations are accessible for TPD

MRT-8102 is a Potent and Selective NEK7-directed MGD

MRT-8102 is a potent NEK7-directed MGD

MRT-8102 induces selective NEK7 degradation and has favorable ADME/DMPK properties

in vitro data	
CRBN binding, IC ₅₀	200 nM
Degradation, DC ₅₀ /D _{max} (hPBMC; 24hr)	10 nM / 89 %

ADMET profile					
CEREP panel	No inhibition				
hERG inhibition patch clamp	EC ₅₀ > 30 µM				
Oral bioavailability	Yes				

10

Non-G-loop Targets can be Recruited to CRBN and Degraded

Non-G-loop Targets can be Recruited to CRBN and Degraded

TMT-Proteomics (Jurkat)

Novel Binding Modes Employ Otherwise Undruggable Surface Patches Surface complementarity with CRBN:MGD drives target engagement

QuEEN[™] AI Finds Degrons Using Surfaces

14

Prediction

Degron

A Patch on VAV1 Shows Surface-similarity to the GSPT1 G-loop Degron

Novel Binding Mode for VAV1 Despite Surface-similarities to GSPT1

MRT-6160 is a Potent and Selective VAV1-directed MGD

MRT-6160 is a potent VAV1-directed MGD

in vitro data	
CRBN binding, IC ₅₀	670 nM
Ternary complex, EC_{50}	11 nM
Degradation, DC ₅₀ /D _{max} (Jurkat)	7 nM / 97 %

MRT-6160 induces selective VAV1 degradation and has a favorable ADME/DMPK profile

ADMET profile	1
CYP DDIs	$IC_{50} > 30 \ \mu M$
hERG inhibition patch clamp	EC ₅₀ > 30 µM
Oral bioavailability all species	> 50%

17

Novel Binding Modes are Highly Diverse in Structure, Sequence and MGD

- Novel binding modes broaden target space
- Potential benefits for selective MGD design

Example of an MGD Engaging a Cryptic Pocket at the Target Interface

Our Rational Approach to Unleash the Full Potential of MGDs

Prioritizing E3 Ligases Based on Reprogrammability Potential

CRL & RING families shown

Monte Rosa Pipeline

Program/ Target	Indication(s)	Discovery	IND-Enabling	Clinical	Next Anticipated Milestone	Ownership
MRT-2359 (GSPT1)	NSCLC, SCLC and other MYC-driven Malignancies				RP2D in Q2 2024	
MRT-6160 (VAV1)	Autoimmune Disease				IND in 1H 2024	
NEK7	Inflammatory Diseases				Development candidate in Q1 2024	
CDK2	Ovarian Cancer, Breast Cancer				Development candidate in 2024	
Discovery Targets	Multiple				Lead optimization	
Discovery Targets	Oncology and Neurological Diseases				Undisclosed	Roche

Acknowledgments – It's a HUGE Team Effort!

